

ТЕХНИЧЕСКИ УНИВЕРСИТЕТ – ВАРНА

Катедра "Електронна техника и микроелектроника"

Анализ, Моделиране и Проектиране на Преобразувателни Устройства

"МАГНИТНИ МАТЕРИАЛИ ЗА СИЛОВАТА ЕЛЕКТРОНИКА"

ас. д-р инж. Георги Тодоров Николов

Основни компоненти на типично силово електронно устройство:

- Съпоставка на използваните в силовата електроника магнитомеки материали (MMM);
- Обзор на съществуващите математични модели на магнитните загуби в MMM;
- Анализ и оценка на различните методи и средства за измерване на загубите в силовата електроника и магнитните компоненти.
- Обобщение на техниките за измерване на температурата и описание на методите за топлопренасяне на магнитни компоненти
- Обзор на методиките за проектиране на магнитни компоненти

Предимства на нанокристалните МММ

	Нанокристален Материал Vitroperm 500F	Феритен Материал 3F3
ЯПо-висока индукция на насищане:	1,2 T	0,4 T
ЭПо-висока относителна магнитна проницаемост:	10000	2000
ЭПо-ниски магнитни загуби:	37kW/m ³	72kW/m ³
ЭПо-висока работна температура:	150°C	100°C
Разнообразие от форми и размери	ограничено	голямо

Моделиране на параметри и загуби на магнитомеки материали

Моделиране на феритни материали

Уравнение на Стейнмец (Steinmetz)

$$P = k.f^{\alpha}.B_{p}^{\beta}$$
(1)

където

P са средните загуби в магнитния материал за единица обем;

k, α , β – коефициент;

f - честотата на синусоидалното напрежение;

*B*_{*p*}- амплитудната стойност на магнитната индукция;

Моделиране на феритни материали

 k_N

`Естествено разширяване на уравнението на Стейнмец" (ЕРУС) за феритни материали при несинусоидално напрежение

$$P_{NSE} = \left(\frac{B_{pp}}{2}\right)^{\beta-\alpha} \frac{k_N}{T} \int_0^T \left|\frac{dB}{dt}\right|^{\alpha} dt \qquad (2)$$

полумостова схема на свързване

$$P_{NSE} = k_N (2f)^{\alpha} B_p^{\beta} (D^{1-\alpha} + (1-D)^{1-\alpha})$$
 (4)

мостова схема на свързване

$$P_{NSE} = k_N (2f)^{\alpha} B_p^{\ \beta} (2D^{1-\alpha})$$
 (5)

- където f е работната честота;
 - B_p амплитудната стойност на магнитната индукция;
 - *D* коефициент на запълване на правоъгълният сигнал.

$$= \frac{\kappa}{(2\pi)^{\alpha-1} \int_{0}^{2\pi} |\cos\theta|^{\alpha} d\theta}$$
 (3)

1

Моделиране на феритни материали

Сравнение на ЕРУС с друг модел

Модифицираното уравнение на Стейнмец (Modified Steinmetz Equation)

$$P_{MSE} = k f_{eq}^{\alpha - 1} B_p^{\beta} f \quad (6) \qquad f_{eq} = \frac{2}{\left(2\pi \frac{B_{pp}}{2}\right)^2} \int_0^T \left(\frac{dB}{dt}\right)^2 dt \quad (7)$$

където f_{eq} е 'еквивалентна честота';
 f - работната честота;
 B_p- амплитудната стойност на магнитната индукция;
 α, β - параметри на материала определени от синусоидални измервания.

Моделиране на феритни материали

Графично представяне на резултатите от проведеното изследване на предложения и съществуващите модел

ЕРУС спрямо МУС: 4.4% максимална разлика 2.3% средна разлика

Уравнението на Стейнмец дава сходни резултати само при коефициент на запълване в диапазона 40-50%

Фиг. 1. Специфични обемни загуби за материал 3F3 при 100 kHz, 25°C, 0,1Т във функция от коефициента на запълване D, при мостова схема на свързване; ЕРУС е с плътна крива; класическото уравнение на Стейнмец е с тире точка, MSE е с пунктирана линия.

Моделиране на феритни материали

с плътна крива; класическото уравнение на Стейнмец е с пунктирана линия, MSE е с тире точка.

Моделиране на нанокристални материали

Широкочестотен модел за ламинирани магнитни материали

Импедансна функция с константен ъгъл на загубите

$$z_h(s) = s \ \mu_h(s) = \mu_{hr} \ s^{1-2\delta_h/\pi}$$
 (9)

където δ_h е ъгълът на загубите (в радиани); s - операторът на Лаплас (s = jw); μ_{hr} - хистерезисна референтна магнитна проницаемост.

От теорията за предавателните линии може да се напише следното уравнение

$$z_{c}(s) = s \ \mu_{c}(s) = \frac{2}{d} \sqrt{\frac{s \ \mu}{\sigma}} \tanh\left(\sqrt{s \ \mu \sigma} \frac{d}{2}\right)$$
(10)
$$z_{c}(s) = s \ \mu_{c}(s) = \frac{2}{d} \sqrt{\frac{\mu_{hr} \ s^{1-2\delta_{h}/\pi}}{\sigma}} \tanh\left(\sqrt{\sigma \ \mu_{hr} \ s^{1-2\delta_{h}/\pi}} \frac{d}{2}\right)$$
(11)

Моделиране на нанокристални материали

Широко честотна функция за комплексна магнитна проницаемост

$$z_g(s) = s\mu_g(s) = \mu_{gr}(s)^{1-2\delta_g/\pi}$$
(12) $\mu_w(s) = \frac{1}{\frac{1}{\mu_c(s)} + \frac{1}{\mu_g(s)}}$ (13)

1

Предложената функция има следните характеристики:

•Обяснява поведението на материала при ниски и високи честоти, и комбинира ъгълът на загубите и амплитудата на магнитната проницаемост само в едно уравнение.

•Дава отговор как може да съществува ъгъл на загубите по-голям от π/4 (45°) при високи честоти, което се наблюдава при аморфните и нанокристални материали.

•Има само четири параметъра (при зададени съпротивление и дебелина на материала): μ_{hr} , δ_h , μ_{gr} и δ_g .

Моделът има и следните недостатъци:

•Използва други параметри от тези използвани в уравнението на Стейнмец

•Моделът се базира на линейна теория, което го прави валиден при дадено ниво на магнитната индукция и когато магнитната индукция не се променя много през дебелината на ламелата.

•Съпротивлението на материала може да се променя в зависимост от дълбочината на проникване на токовата плътност.

Моделиране на нанокристални материали

Практическа реализация на предложения модел

$$z_{\rm p} = 1/(\sigma + j\omega\varepsilon) \approx 1/\sigma$$
(14)
$$z_{\rm s}(j\omega) = j\omega\mu_{\rm h}(j\omega) = \mu_{\rm hr} \cdot [j\omega]^{1-2\delta_{\rm h}/\pi}$$
(15)

Моделиране на нанокристални материали

$$S(j\omega) = -H_{rms}^{2} j\omega \mu_{w}(j\omega) \quad P(D) = \left[A_{e} L_{e} \sum_{n=1}^{100} \left(\frac{V_{np}(D,n)}{2\pi f n A_{e} N}\right)^{2} \operatorname{Re}\left(\frac{\pi f n}{z_{c}(j\omega)}\right)\right]$$
(16)
(17)

където Ае е ефективното сечение на магнитният материал;

L_e – средната дължина на магнитната линия;

 V_{np} – напрежението върху тествания образец;

D – коефициент на запълване;

N – брой навивки;

n – номер на хармоника;

f – работна честота

z_c— импедансна функция за комплексната магнитна проницаемост.

полумостова схема
$$V_{np}(D,n) = \frac{2}{\pi n} V_{dc}(D) \left[\sin(D\pi n) \right]$$
 (18)

хема
$$V_{np}(D,n) = \frac{2}{\pi n} V_{dc}(D) \left[2\sin\left(\frac{\pi}{2}n\right) \cos\left[\left(0.5 - D\right)\pi n\right] \right]$$
 (19)

мостова схема

Моделиране на нанокристални материали

Фиг. 2.3 Измерени и изчислени данни за материал Vitroperm 500F и Finemet FT-3M при синусоидално напрежение. *Pmeas* са експериментални данни, Re(S) – специфични загуби в магнитопровода за единица обем (реалната част на пълната мощност) във [W/kg], |S| пълната мощност за единица обем във [VA/kg], |μ| комплексната, Re(μ) реалната и Im(μ) имагинерната стойност на магнитна проницаемост.

В ляво - Vitroperm 500F, в дясно - FT-3M

Моделиране на нанокристални материали

Моделиране на нанокристални материали

$$i(D,t) = \frac{1}{N} \operatorname{Re}\left[\sum_{n=1}^{100} \left(\frac{V_{np}(D,n)}{A_e N}\right) e^{(j2\pi f nt)} \left(\frac{1}{z_c(j\omega)}\right)\right]$$
(20)

Фиг. 2.4 Данни от проведените измервания (пунктирана линия) и резултатът от модела за тока през тестваният компонент (плътна линия). Finemet FT-3M, 25°C, 100kHz, 0.1T, полумостова схема

Моделиране на нанокристални материали

$$V_{np}(D,n) = \frac{2}{\pi n} V_{dc}(D) \left[\sin(D\pi n) \right]$$
(21)

Време, [s]

Фиг. 2.5 Данни от проведените измервания (пунктирана линия) и резултатът от модела за напрежението върху тестваният компонент (плътна линия). Finemet FT-3M, 25°C, 100kHz, 0.1T, полумостова схема

Получаване и обработка на експериметални данни за загубите в МММ

Основни блокове на тестовата система

•Платформа – осигуряваща необходимите форма и стойност на напрежението и тока;

•Цифров запомнящ осцилоскоп със специализирани сонди – осигурява измерването на напрежение, ток и магнитен поток;

•Захранващ блок – осигурява необходимото напрежение и ток за захранване на платформата

•Калориметър – потвърждава резултатите от цифровият осцилоскоп

•Нагревател – загрява МММ до необходимата температура;

•Живачен и Безконтактен инфрачервен термометър – измерват и следят температурата на МММ;

Предимства на системата

- •Позволява измерването на:
 - •Ток;
 - •Напрежение;
 - •Загуби;
 - •Честота;
 - •Температура.

•Много по-кратко време за провеждането на измерванията в сравнение с калориметричните измервания.

•Грешка на измерванията по-малка от 5%.

Основни блокове на тестовата система

Опитни образци на магнитни материали

	Образец 1	Образец 2	Образец З	Образец 4
Материал	3F3	N67	FT-3M	Vitroperm 500F
Магнитопровод	ETD44	E42/21/15	F3CC0010	W516-02
Производител	Ferroxcube	Epcos	Hitachi Metals	Vacuum- schmelze
Брой навивки (основна и измервателна намотки)	5	5	5	5
Проводници в паралел	2	2	2	3
Омично съпротивление на основната намотка, mΩ	15.3	17.6	14.2	6.9
Индуктивност, µН	82.0	90.1	126.8	1316
Ефективно сечение на магнитопровода, mm ²	173	178	172	76
Тегло на магнитопровода, гр	94	88	197	79
Обем на магнитопровода, mm ³	17800	17300	27000	10700

Опитни образци на магнитни материали

3F3, ETD44

N67, E42/21/15

Vitroperm 500F, W516-02

Finemet FT-3M, F3CC0010

Глава III - Получаване и обработка на експериметални

данни за загубите в МММ

Основни измервания

Измервания при правоъгълно напрежение Мостова схема 25°С 100°С Полумостова схема 25°С 100°С

Измервания при синусоидално напрежение 25°C 100°C

данни за загубите в МММ

Температурни измервания

Фиг. 3.1 Зависимост на загубите на измерваните материали от температурата

Схеми на свързване при правоъгълно напрежение

Фиг. 3.5 Опитна постановка и осцилограми при мостово и полумостово включване

Схеми на свързване при синусоидално напрежение

Фиг. 3.5 Опитна постановка за^{*a*}провеждане на синусоидални измервания – чрез синусоидален

Подобряване на точността на измерванията по метода с осцилоскопа, чрез компютърен софтуер

Таблица 3.2. Грешка на различните осцилоскопи при измерване на загубите за материал FT-3M, 100kHz, 25°C, 50%

				Необходимо време					
Начин на измерване	Загуби	Абсолютна грешка	Относителна грешка	установяване	измерване	прехвърляне	обработка	Общо	
	W	W	%	min					
Калориметър	4,50	0,00	0,0%	30	<1	2	2	35	
DL1540	4,57	0,07	1,6%	0	2	2	2	6	
TPS2014 + МАТЛАБ	4,41	-0,09	-2,0%	0	2	<1	<1	3	
PDS5022 + МАТЛАБ	4,36	-0,14	-3,2%	0	4	3	2	9	
TPS2014	4,19	-0,31	-6,9%	0	2	2	2	6	

Подобряване на точността на измерванията по метода с осцилоскопа, чрез компютърен софтуер

Подобряване на точността на измерванията по метода с осцилоскопа, чрез компютърен софтуер

схема, коефициент на запълване 9%, при 100°С

Получени резултати

D	U _{rms}	I _{rms}	I _{p-p}	Р _{общи}	Рпров	Р _{мат}	P _{specific}	P _{specific}
%	V	Α	Α	W	mW	W	kW/m ³	W/kg
50%	35.0	0.41	1.44	2.16	3.29	2.15	120.9	22.9
45%	36.2	0.43	1.42	2.31	3.41	2.31	129.5	24.5
40%	38.1	0.46	1.42	2.51	3.54	2.50	140.5	26.6
35%	40.3	0.48	1.42	2.62	3.69	2.62	147.2	27.9
30%	43.0	0.50	1.40	2.76	3.88	2.75	154.6	29.3
25%	46.7	0.52	1.42	3.00	4.12	3.00	168.5	31.9
20%	51.0	0.54	1.43	3.29	4.43	3.29	184.8	35.0
15%	59.1	0.55	1.42	3.88	4.86	3.87	217.5	41.2
10%	69.9	0.55	1.43	4.83	5.53	4.82	270.9	51.3
5%	96.0	0.55	1.45	7.57	6.92	7.56	424.8	80.4

D	U _{rms}	I _{rms}	I _{p-p}	Р _{общи}	Рпров	Р _{мат}	P _{specific}	P _{specific}
%	v	Α	Α	W	mW	W	kW/m ³	W/kg
50%	34.9	0.35	1.25	1.05	3.21	1.05	58.8	11.1
45%	36.4	0.39	1.24	1.18	3.32	1.18	66.2	12.5
40%	37.9	0.40	1.24	1.31	3.45	1.30	73.1	13.8
35%	40.2	0.42	1.23	1.43	3.60	1.43	80.2	15.2
30%	42.7	0.44	1.23	1.59	3.78	1.59	89.2	16.9
25%	46.1	0.45	1.23	1.81	4.00	1.81	101.6	19.2
20%	50.9	0.47	1.24	2.13	4.30	2.12	119.1	22.6
15%	56.5	0.49	1.26	2.76	4.71	2.75	154.5	29.3
10%	70.7	0.50	1.30	3.94	5.35	3.93	221.0	41.9
5%	95.6	0.54	1.40	7.18	6.68	7.18	403.2	76.3

Данни за материал 3F3, 0.1T, 100kHz, 25°C, мостова схема

Данни за материал 3F3, 0.1T, 100kHz, 100°C, мостова схема

Получени резултати

Получени резултати

Получени резултати

Сравнение на специфичните загуби за четирите изследвани образеца, 100mT, 100kHz, 100°C, при променлив коефициент на запълване

Усъвършенствана методика за проектиране на трансформатори

Проектирането на силовите магнитни компоненти трябва да е съобразено с два важни аспекта:

•как се отвеждат генерираните загуби в компонента

•как се оценяват и колко са вихровите токове в намотките и магнитопровода.

Представен е подход за адаптиране на две стъпки от методиката "Fast Design Approach" – на Van den Bossche и Вълчев Изчисляване на допустимата разсейвана мощност на магнитопровода Р_н

$$P_h = k_A a b \qquad (24)$$

 k_A е избран 2500 *W/m²*, като авторите указват, че тази стойност е валидна за феритни магнитопроводи с максимална работна температура около 80-90°С и температура на околното пространство от 60°С, без принудително охлаждане!

При различни от горните условия *k*_A има други стойност!

Стъпките за определянето на k_A са следните:

- Определят се площите на МК, чрез които става топлообменна;
- Изчислява се дължината на граничния слой флуид, чрез който става кондуктивният топлообмен *L;*
- Избира се скорост на въздуха, обдухващ компонента *v*.
- Намира се коефициентът на чернота ε_T ;
- Получава се топлообменна;
- Изчислява се коефициентът k_A .

Еквивалентни площи на трансформатор

 $S_{rad} = 2(4S_1 + 2S_2 + S_3 + 2S_4 + 2S_7 + 2S_8) \quad S_{conv} = 2(2S_5 + 2S_6 + S_3 + 2S_4 + 2S_7 + 2S_8)$

Глава IV - Усъвършенствана методика за проектиране на трансформатори

Пълна дължината на граничния слой

Дължината на граничния слой между компонента и охлаждащият флуид

🤣 Глава IV - Усъвършенствана методика за проектиране на трансформатори

Скорост на въздуха обдухващ компонента

Опитни схеми на двата експеримента

Скоростта на въздуха е измерена на разстояние 1см пред магнитния компонент с анемометър ЕА3000 с точност ±5%.

Топлопренос на магнитни компоненти при принудително охлаждане

$$q = q_{rad} + q_{conv} = \mathcal{E}_T \sigma S_{env} \left(T_{pa\delta}^4 - T_{o\kappa.cp}^4 \right) + \alpha_c S_{conv} \left(T_{pa\delta} - T_{o\kappa.cp} \right)$$

където:

 q_{rad} , q_{conv} са топлинният поток при топлопренасяне чрез лъчене и чрез конвекция ε_{τ} – сумарен коефициент на чернота;

σ – константата на Стефан–Болцман – 5,6704.10⁻⁸ [W.m⁻².K⁻⁴];

S_{rad} – ефективна площ при лъчист топлообмен [m²];

S_{сопу} – ефективна площ при конвективен топлообмен [m²];

*Т*_{раб} – работна температура [K];

T_{ок.cp} – температура на околната среда [K];

 a_{c} - коефициент на конвективен топлообмен;

$$\alpha_c = (3, 33 + 4, 8v^{0,8})L^{-0,288}$$

където:

L е дължината на граничният слой между компонента и охлаждащият го флуид; v – скоростта на флуида.

Топлопренос на магнитни компоненти при принудително охлаждане

Магнитен	\mathcal{E}_T	L	V	a _c	q_{rad}	q _{conv}	\boldsymbol{q}_{tot}
компонент	-	mm	m/s	$W/(m^2.K)$	W	W	W
			0	6,1	11,6	9,4	21,1
E80/38/20, 3F3	0,96	120	2,5	24,5	11,6	37,8	49,4
			5,0	38,1	11,6	58,8	70,4
			0	6,6	6,7	6,8	13,5
F3CC0010, Finamet FT 3M	0,82	94	2,5	26,3	6,7	27,2	33,8
			5,0	40,9	6,7	42,2	48,9

Разсейваща способност на един феритен и един нанокристален трансформатор q_{tot} за различна скорост на охлаждащият флуид

🏓 Глава IV - Усъвършенствана методика за проектиране на трансформатори

	Нанокристални материали											
Скорост на вьздуха обдухващ компонентьт, v[m/s] Максимална работна температура, Т _{макс} [°C]	0	1	2	3	4	5						
70	2080	3680	4860	5930	6930	7880						
80	2660	4660	6140	7480	8720	9910						
90	3260	5670	7450	9050	10540	11970						
100	3900	6700	8780	10650	12390	14050						
110	4560	7770	10140	12280	14270	16170						
120	5270	8860	11530	13940	16180	18320						
130	5990	9990	12960	15630	18130	20500						

🤣 Глава IV - Усъвършенствана методика за проектиране на трансформатори

	Феритни материали											
Скорост на вьздуха обдухващ компонентьт, v[m/s] Максимална работна температура, Т _{макс} [°C]	0	1	2	3	4	5						
70	2430	4390	5850	7160	8380	9550						
80	3110	5560	7380	9020	10550	12000						
90	3810	6760	8940	10900	12740	14480						
100	4550	7980	10530	12820	14960	17000						
110	5320	9240	12150	14770	17220	19550						
120	6120	10540	13810	16760	19510	22130						
130	6960	11870	15510	18780	21840	24750						

Намиране на стойността на магнитната индукция от каталожните данни

Входни данни за проектирания трансформатор

Напрежение на първичната намотка	300V
Изходно напрежение (без товар)	60V
Изходно напрежение (максимален товар)	26V
Максимален изходен ток	150A
Работна честота	80kHz
Скорост на въздуха, обдухващ трансформатора	2,5m/s
Максимална работна температура	90°C
Коефициент на запълване	5-45%
Максимална работна температура за феритния трансформатор	90°C
Максимална работна температура за нанокристалния трансформатор	110°C

	Феритен трансформатор H:	Нанокри							
Параметър	Намотка	Означ ение		Случай 0	Случай 1	Случай 2	Случай З	Случай 4	стален трансфо рматор
Брой царирии	първична	N_{lp}	-	- 14 10		0	11		
ррои паривки	вторична	N_{2p}	-		3		4	2	2
Магнитна индукция		В	Т		0,17		0,	13	0,26
Диаметър на проводника	първична	d_l	mm	1,30 (1,41)	3,55 (3,68)	0,20 (2,65)	1,0	2,0	1,50
(заедно с изолацията)	вторична	d_2	mm	5,00 (5,14)	4,00 (4,13)	0,20 (4,97)	4,5	3x7,5	0,7x32
Г¥	първична	p_l	-	1	1	100	1	1	2
врои проводници в паралел	вторична	p_2	-	1	4	2×350	1	1	1
Грой акриванантин ако ара	първична	m_{El}	-	1	1	10	1	1	1
Брой еквивалентни слоеве	вторична	m_{E2}	-	1	1	26,5	1	1	2
Ерой акриралантин нерирки	първична	n_{El}	-	14	14	140	10	10	22
прои сквивалентни навивки	вторична	n_{E2}	-	3	12	79,4	2	4,43	46

Коефициентите на	първична	ካ <i>1</i>	-	0,34	0,93	0,53	0,19	0,38	0,89
запълване по посока на навивките	вторична	η_2	-	0,28	0,93	0,3	0,17	0,28	0,98
Коефициентите на запълване по посока	първична	λ_l	-	0,07	0,18	0,1	0,05	0,10	0,12
перпендикулярна на навивките	вторична	λ_2	-	0,26	0,21	0,27	0,23	0,17	0,12
Коефициент показващ, колко пъти загубите от	първична	k_{c1}	-	0,98	9,4	0,43	0,36	2,30	3,37
вихрови токове са по-големи от омичните	вторична	k_{c2}	-	5,51	10,62	0,98	4,19	3,68	1,39
Постоянно токово	първична	<i>R</i> _{0,1}	mΩ	33,96	4,69	15,07	23,16	5,92	10,04
съпротивление	вторична	<i>R</i> _{0,2}	mΩ	0,49	0,19	0,46	0,26	0,21	0,29
Екриралента нестота	първична	$f_{\it eq,l}$	kHz	540	3920	12,8	320	1280	719
Еквивалента честота	вторична	$f_{\it eq,2}$	kHz	8000	5120	12,8	6480	3670	199
	първична	$P_{ohm,l}$	W	5,74	0,79	2,55	3,91	1,00	1,54
OMMANN Sal you	вторична	$P_{ohm,2}$	W	11,07	4,32	10,38	5,80	2,30	6,48
Corrigu of Directory Toyong	първична	$P_{\it eddy,l}$	W	5,61	7,44	1,10	1,42	4,72	5,19
загуби от вихрови токове	вторична	P _{eddy,2}	W	60,96	45,91	10,14	24,32	17,36	8,98
Общи загуби във двете намотки	заедно	P_{total}	W	83,38	58,47	24,17	35,45	25,38	22,19
Допустими загуби	заедно	P_h	W			27,05			25,91

Таблица 4.11. Изчислени и измерени загуби в двата трансформатора

		губи в намс	отките		Загуби в магнитопровода				
	(опит	на късо съе	динени	e)	(опит на празен ход)				
	Изчислени	Измерени	Разл	тика	Изчислени	Измерени	Измерени Разлик		
	W	W	W %		W	W	W	%	
Феритен	25,38	24,71	-0,67	-2,7%	29,80	28,64	-1,16	-4,1%	
Нано	22,19	21,04	-1,15	-5,5%	25,91	25,8	-0,11	-0,4%	

Таблица 4.12. Сравнение на двата реализирани трансформатора и подобрение от използването на нанокристален МММ

		Случай 4 (2 х E80/38/20)	Случай 5 (2 x F3CC0010)	Разлика	Подобрение
Maca	kg	1,176	0,572	0,604	51,4%
Площ	mm ²	6080	4608	1472	24,2%
Обем	mm ³	340480	211968	128512	37,7%
Цена (магнитопровод)	ЛВ.	2 x (12,00÷15,00)	2 x (15÷60)		0 ÷ -400%

Има и такива трансформатори! 🕲

Благодаря Ви за вниманието!